python学习(三):函数进阶

python学习(三):函数进阶

本篇博客主要介绍了

  1. 函数参数的使用
  2. 高阶函数介绍
  3. 高阶函数使用

内容整理和修改自骆昊老师的github_python100天教学。

一、函数参数

函数是绝大多数编程语言中都支持的一个代码的"构建块",但是Python中的函数与其他语言中的函数还是有很多不太相同的地方,其中一个显著的区别就是Python对函数参数的处理。在Python中,函数的参数可以有默认值,也支持使用可变参数,所以Python并不需要像其他语言一样支持函数的重载,因为我们在定义一个函数的时候可以让它有多种不同的使用方式。

1.1 参数默认

在函数定义的时候我们可以给参数提供一个默认值,这样我们在不提供给定参数的时候可以使用默认参数进行函数运算。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def add(a=0, b=0, c=0):
"""三个数相加求和"""
return a + b + c


# 调用add函数,没有传入参数,那么a、b、c都使用默认值0
print(add()) # 0
# 调用add函数,传入一个参数,那么该参数赋值给变量a, 变量b和c使用默认值0
print(add(1)) # 1
# 调用add函数,传入两个参数,1和2分别赋值给变量a和b,变量c使用默认值0
print(add(1, 2)) # 3
# 调用add函数,传入三个参数,分别赋值给a、b、c三个变量
print(add(1, 2, 3)) # 6
# 传递参数时可以不按照设定的顺序进行传递,但是要用“参数名=参数值”的形式
print(add(c=50, a=100, b=200)) # 350

注意:带默认值的参数必须放在不带默认值的参数之后,否则将产生SyntaxError错误,错误消息是:non-default argument follows default argument,翻译成中文的意思是“没有默认值的参数放在了带默认值的参数后面”。

1.2 可变参数

接下来,我们还可以实现一个对任意多个数求和的add函数,因为Python语言中的函数可以通过星号表达式语法来支持可变参数。所谓可变参数指的是在调用函数时,可以向函数传入0个或任意多个参数。将来我们以团队协作的方式开发商业项目时,很有可能要设计函数给其他人使用,但有的时候我们并不知道函数的调用者会向该函数传入多少个参数,这个时候可变参数就可以派上用场。下面的代码演示了用可变参数实现对任意多个数求和的add函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# 用星号表达式来表示args可以接收0个或任意多个参数
def add(*args):
total = 0
# 可变参数可以放在for循环中取出每个参数的值
for val in args:
if type(val) in (int, float):
total += val
return total


# 在调用add函数时可以传入0个或任意多个参数
print(add())
print(add(1))
print(add(1, 2))
print(add(1, 2, 3))
print(add(1, 3, 5, 7, 9))

1.3 关键字参数

下面是一个判断传入的三条边长能否构成三角形的函数,在调用函数传入参数时,我们可以指定参数名,也可以不指定参数名,代码如下所示。

1
2
3
4
5
6
7
8
9
10
11
def is_triangle(a, b, c):
print(f'a = {a}, b = {b}, c = {c}')
return a + b > c and b + c > a and a + c > b


# 调用函数传入参数不指定参数名按位置对号入座
print(is_triangle(1, 2, 3))
# 调用函数通过“参数名=参数值”的形式按顺序传入参数
print(is_triangle(a=1, b=2, c=3))
# 调用函数通过“参数名=参数值”的形式不按顺序传入参数
print(is_triangle(c=3, a=1, b=2))

在没有特殊处理的情况下,函数的参数都是位置参数,也就意味着传入参数的时候对号入座即可,如上面代码的第7行所示,传入的参数值123会依次赋值给参数abc。当然,也可以通过参数名=参数值的方式传入函数所需的参数,因为指定了参数名,传入参数的顺序可以进行调整,如上面代码的第9行和第11行所示。

1.3.1 命名关键字参数

调用函数时,如果希望函数的调用者必须以参数名=参数值的方式传参,可以用命名关键字参数(keyword-only argument)取代位置参数。所谓命名关键字参数,是在函数的参数列表中,写在*之后的参数,代码如下所示。

1
2
3
4
5
6
7
8
9
10
def is_triangle(*, a, b, c):
print(f'a = {a}, b = {b}, c = {c}')
return a + b > c and b + c > a and a + c > b


# TypeError: is_triangle() takes 0 positional arguments but 3 were given
# print(is_triangle(3, 4, 5))
# 传参时必须使用“参数名=参数值”的方式,位置不重要
print(is_triangle(a=3, b=4, c=5))
print(is_triangle(c=5, b=4, a=3))

注意:上面的is_triangle函数,参数列表中的*是一个分隔符,*前面的参数都是位置参数,而*后面的参数就是命名关键字参数。

1.3.2 可变参数和关键字参数

我们之前讲过在函数的参数列表中可以使用可变参数*args来接收任意数量的参数,但是我们需要看看,*args是否能够接收带参数名的参数。

1
2
3
4
5
6
7
8
9
def calc(*args):
result = 0
for arg in args:
if type(arg) in (int, float):
result += arg
return result


print(calc(a=1, b=2, c=3))

执行上面的代码会引发TypeError错误,错误消息为calc() got an unexpected keyword argument 'a',由此可见,*args并不能处理带参数名的参数。我们在设计函数时,如果既不知道调用者会传入的参数个数,也不知道调用者会不会指定参数名,那么同时使用可变参数和关键字参数。关键字参数会将传入的带参数名的参数组装成一个字典,参数名就是字典中键值对的键,而参数值就是字典中键值对的值,代码如下所示。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def calc(*args, **kwargs):
result = 0
for arg in args:
if type(arg) in (int, float):
result += arg
for value in kwargs.values():
if type(value) in (int, float):
result += value
return result


print(calc()) # 0
print(calc(1, 2, 3)) # 6
print(calc(a=1, b=2, c=3)) # 6
print(calc(1, 2, c=3, d=4)) # 10

提示不带参数名的参数(位置参数)必须出现在带参数名的参数(关键字参数)之前,否则将会引发异常。例如,执行calc(1, 2, c=3, d=4, 5)将会引发SyntaxError错误,错误消息为positional argument follows keyword argument,翻译成中文意思是“位置参数出现在关键字参数之后”。

二、高阶函数介绍

在面向对象的世界中,一切皆为对象,所以类和函数也是对象。函数的参数和返回值可以是任意类型的对象,这就意味着函数本身也可以作为函数的参数或返回值,这就是所谓的高阶函数

如果我们希望上面的calc函数不仅仅可以做多个参数求和,还可以做多个参数求乘积甚至更多的二元运算,我们就可以使用高阶函数的方式来改写上面的代码,将加法运算从函数中移除掉,具体的做法如下所示。

1
2
3
4
5
6
7
8
9
def calc(*args, init_value, op, **kwargs):
result = init_value
for arg in args:
if type(arg) in (int, float):
result = op(result, arg)
for value in kwargs.values():
if type(value) in (int, float):
result = op(result, value)
return result

注意,上面的函数增加了两个参数,其中init_value代表运算的初始值,op代表二元运算函数。经过改造的calc函数不仅仅可以实现多个参数的累加求和,也可以实现多个参数的累乘运算,代码如下所示。

1
2
3
4
5
6
7
8
9
10
def add(x, y):
return x + y


def mul(x, y):
return x * y


print(calc(1, 2, 3, init_value=0, op=add, x=4, y=5)) # 15
print(calc(1, 2, x=3, y=4, z=5, init_value=1, op=mul)) # 120

通过对高阶函数的运用,calc函数不再和加法运算耦合,所以灵活性和通用性会变强,这是一种解耦合的编程技巧,但是最初学者来说可能会稍微有点难以理解。需要注意的是,将函数作为参数和调用函数是有显著的区别的,调用函数需要在函数名后面跟上圆括号,而把函数作为参数时只需要函数名即可。上面的代码也可以不用定义addmul函数,因为Python标准库中的operator模块提供了代表加法运算的add和代表乘法运算的mul函数,我们直接使用即可,代码如下所示。

1
2
3
4
import operator

print(calc(1, 2, 3, init_value=0, op=operator.add, x=4, y=5)) # 15
print(calc(1, 2, x=3, y=4, z=5, init_value=1, op=operator.mul)) # 120

Python内置函数中有不少高阶函数,我们前面提到过的filtermap函数就是高阶函数,前者可以实现对序列中元素的过滤,后者可以实现对序列中元素的映射,例如我们要去掉一个整数列表中的奇数,并对所有的偶数求平方得到一个新的列表,就可以直接使用这两个函数来做到,具体的做法是如下所示。

1
2
3
4
5
6
7
8
9
10
11
def is_even(num):
return num % 2 == 0


def square(num):
return num ** 2


numbers1 = [35, 12, 8, 99, 60, 52]
numbers2 = list(map(square, filter(is_even, numbers1)))
print(numbers2) # [144, 64, 3600, 2704]

当然,要完成上面代码的功能,也可以使用列表生成式,列表生成式的做法更为简单优雅。

1
2
3
numbers1 = [35, 12, 8, 99, 60, 52]
numbers2 = [num ** 2 for num in numbers1 if num % 2 == 0]
print(numbers2) # [144, 64, 3600, 2704]

三、 常用高阶函数

主要包括map,reduce,filter三个函数

3.1 map()

我们先看map。map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

举例说明,比如我们有一个函数f(x)=$x^2$,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
            f(x) = x * x



┌───┬───┬───┬───┼───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

[ 1 2 3 4 5 6 7 8 9 ]

│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

[ 1 4 9 16 25 36 49 64 81 ]

现在,我们用Python代码实现:

1
2
3
4
5
6
>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

3.2 reduce()

再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

1
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

1
2
3
4
5
6
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

3.3 filter()

Python内建的filter()函数用于过滤序列。

map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

1
2
3
4
5
def is_odd(n):
return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

1
2
3
4
5
def not_empty(s):
return s and s.strip()

list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

3.4 高阶函数的结合使用

1
2
3
4
5
6
7
8
9
10
11
12
#生成列表所有偶数的平方的新列表
def is_even(num):
return num % 2 == 0


def square(num):
return num ** 2


numbers1 = [35, 12, 8, 99, 60, 52]
numbers2 = list(map(square, filter(is_even, numbers1)))
print(numbers2) # [144, 64, 3600, 2704]

一个str2int的函数表示成:

1
2
3
4
5
6
7
8
9
10
from functools import reduce

DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}

def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return DIGITS[s]
return reduce(fn, map(char2num, s))